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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS.
I. FUNDAMENTAL CONCEPTS

By R. S. RIVLIN
British Rubber Producers’ Research Association, Welwyn Garden City

(Communicated by G. I. Taylor, F.R.S.—Received 29 December 1945.— Revised 13 February 1947)

INTRODUCTION

The mathematical theory of small elastic deformations has been developed to a high degree
of sophistication on certain fundamental assumptions regarding the stress-strain relation-
ships which are obeyed by the materials considered. The relationships taken are, in effect,
a generalization of Hooke’s law—ut fensio, sic vis. The justification for these assumptions
lies in the widespread agreement of experiment with the predictions of the theory and in the
interpretation of the elastic behaviour of the materials in terms of their known structure. The
same factors have contributed to our appreciation of the limitations of these assumptions.

The principal problems, which the theory seeks to solve, are the determination of the
deformation which a body undergoes and the distribution of stresses in it, when certain
forces are applied to it, and when certain points of the body are subjected to specified
displacements. These problems are always dealt with on the assumption that the generaliza-
tion of Hooke’s law is obeyed by the material of the body and that the deformation is small,
i.e. the change of length, in any linear element in the material, is small compared with the
length of the element in the undeformed state.

Apart from the fact that the generalization of Hooke’s law is obeyed accurately by a very
wide range of materials, under a considerable variety of stress and strain conditions, it has
the further advantage that it leads to a mathematically tractable theory.

Even if the elastic materials, which it is wished to study, did not obey accurately the
simple law postulated but varied in their elastic properties, one from another, there would
still be some justification for developing a mathematical theory on this hypothesis. For, it
would clearly not be possible to develop a separate mathematical theory, to any considerable
extent, based on the known law for each material with which we may be required to deal.
The simplicity of the generalization of Hooke’s law makes it a peculiarly suitable basis for-
a mathematical theory which can be regarded as strictly applicable to an ideal material.
The departures of the elastic behaviour of any particular material from the generalization
of Hooke’s law are then regarded as reflexions of the departure of the material from the ideal
structure. This would be all the more true if it were found that the generalization of Hooke’s
law followed from some model of the structure of the elastic materials considered which was
satisfactory in other respects. ‘

In seeking a basic hypothesis on which to develop a mathematical theory of large elastic
deformations, we are presented with a similar problem. We must choose a law expressing
the stress-strain relationships which is sufficiently simple to allow of considerable mathe-
matical development and which at the same time expresses the known behaviour of as wide
a range of highly elastic materials as possible. It is quite clear that the wider the range of
materials to be embraced by the theory, the less likely will it be that the theory applies
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460 R. S. RIVLIN ON LARGE ELASTIC

exactly to any particular material. It is, however, to be expected that the clastic properties
of a group of materials, e.g. the rubber-like materials, having structural similarities, will
be expressible by similar laws.

It is necessary, then, to strike a compromise between mathematical tractability, breadth
of applicability and exactitude of applicability.

In the present paper, the first steps are taken in the development of a mathematical
theory of large elastic deformations.

Part A is principally concerned with the consideration of stress-strain relationships, and
their relation to the elastic energy stored in a deformed body. In §1 the components of
strain are defined, in the classical manner (see Love 1927, p. 59 et seq.), when the deforma-
tions are no longer small and certain results of these definitions, which are subsequently
used in the paper, are recapitulated. In the following section (§2) the components of stress
are defined. A type of stress-strain relationship, which is shown to be a natural extension of
that adopted in the study of small elastic deformations, is studied in some detail (§§ 3 to 6).
Itis described as neo-Hookean elasticity. The assumption of incompressibility of the material
is made in these relationships and in their development. The justification for this is discussed
in §11. This type of stress-strain relationship is shown to have the further merit, as a basis
on which to develop a mathematical theory of large elastic deformations, that it is in agree-
ment with that obtained for an ideal rubber-like material, from the molecular statistical
considerations of Wall, Flory, Treloar and others. It also shows approximate agreement
with measurements on vulcanized rubbers over a wide range of strains, of certain simple
types which have been studied experimentally (§11).

In developing a mathematical theory by which the deformation of a body resulting from
the application of known forces can be calculated, from a knowledge of the elastic behaviour
of the material, it is necessary to set up equations of motion and boundary conditions for the
body. These may be obtained if either the stress-strain relationships, obeyed by the material
of the body, or the elastic energy stored in the body for any specified state of strain, is known.
The stress-strain relationships and the formula for the elastically stored energy in terms of
strain are related and these relationships are worked out, in general terms, both for a com-
pressible material (§7) and for an incompressible material (§ 8). The stored energy formula
is then obtained for the special case of neo-Hookean elasticity (§9). It is shown that this
stored energy formula is equivalent to that normally used for small Hookean elastic deforma-
tion, if the assumption of small deformation and incompressibility is introduced (§ 10).

In Part B of the paper, the equations of motion and boundary conditions are obtained
both in terms of the stress components (§§ 13, 14) and in terms of the stored energy function
(§§ 15, 16). The results obtained by the two methods are formally different but are shown
to be equivalent (§§17,18). These results are modified for the case of an incompressible
material (§19) and the particular case of a neo-Hookean, incompressible material is dealt
with in §20.

Some of the formulae derived in this paper have already been given, particularly by
E. & F. Cosserat (1896) and Brillouin (1925). E. & F. Cosserat obtain the equations of equi-
librium and boundary conditions for a compressible material, in terms of a general stored
energy function. They also quote, from Boussinesq, the relations between the stress com-
ponents and the stored energy function, derived here in §7. However, for the sake of
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DEFORMATIONS OF ISOTROPIC MATERIALS. I 461

completeness and uniformity of treatment and because E. & F. Cosserat’s paper is not, in
general, readily available for reference, these results are derived afresh here.

E. & F. Cosserat conduct their analysis in a system of rectangular, Cartesian co-ordinates,
as is done in this paper, and subsequently generalize the results they obtain to a general
system of orthogonal, curvilinear co-ordinates. Brillouin covers the ground already covered
by E. & F. Cosserat, but uses the methods of the calculus of tensors and pseudo-tensors to
obtain his results. In this paper, it has been decided to conduct the analysis in a system of
rectangular, Cartesian co-ordinates and it is intended, in a subsequent paper, to generalize
the results obtained to certain particular systems of orthogonal curvilinear co-ordinates
which are of special interest in practical problems. Although the procedure of Brillouin has
certain advantages of mathematical elegance and generality, it has the disadvantage that the
analysis and interpretation of the formulae obtained require a considerable knowledge of
the calculus of tensors and pseudo-tensors. Neither E. & F. Cosserat nor Brillouin consider
the modifications to their theory which are required in dealing with an incompressible
material, nor do they consider the particular law on which the solution of practical problems
is to be based.

PART A. STRESS-STRAIN RELATIONSHIPS
1. THE DEFINITION OF LARGE STRAINS

In a fixed, rectangular, Cartesian, co-ordinate system, the co-ordinates of a point of an
elastic solid, in its undeformed state, are (x,y,z). In a strained state of the solid, each point
(%,7,2z) of the solid has undergone displacements whose components parallel to the axes
of the co-ordinate system are (u, v, w). (u,v, w) are, in general, functions of (x, y, z). Following
Cauchy (1827; Love 1927, pp. 59 et seq.), we may define six components of strain

€ ¢,,) 1n the chosen co-ordinate system, thus

(exxﬂ 6yy3 229 eyzﬂ ezx> xy)
€xx = U5 (uf 0} +w]),
byy = vy+%(u§+v§+w§)’
€20 = W+ F(ul+02+wl),
€y, = Wy +V,+u,u,+0,0,+w,w,,
€zx = U, + w, -+ uu, + U0, -+ w,w,,

€y == Uyt Uy +U U, 4V, 0, +W W,

(1-1)

It is clear that when the deformations are small, so that second degree terms in

Uy Uy, ..., W, can be neglected in comparison with first degree terms, the components of strain

(Exxs €5 --+> €xy) DECOME (€€, ..., ¢,,), the components of strain for small deformations,
where
Crx = Uns byy = Uys Crz = Wy ]
‘ (1-2)

€ =V, FW, €,=W,+U, ¢é,= uy—l—vx.J
The length ds’, in the deformed state, of a linear element of the material, which in the
undeformed state has a length ds, lies at the point (x,y, z) and has direction-cosines (/, m, n)
with respect to the co-ordinate system, is given by

2 . .
(%) = (1+2¢,,) P+ (1+ 26yy) m?+ (14 2¢,,) n*4-2¢,,mn+2¢,,nl+2¢,, Im. (1-3)

57-2
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462 R. S. RIVLIN ON LARGE ELASTIC

Thus, if the six components of the strain, as defined by Cauchy, are given at a point, the
ratio of the deformed to undeformed length ot an element at that point, having any specified
direction in the unstrained state, may be calculated. In particular (14-2¢,,), (1+2¢,,)
and (14 2e,,) give respectively the values of (ds’/ds)? for an element of length which lies at
(x,9, z) and has a direction parallel to the x, y or z axes in the undeformed state.

From (1-3) the reciprocal strain ellipsoid

(1+2¢,,) x>+ (142¢,) y*+ (1 +2¢,,) 22+ 2¢,,yz+2¢,,zx+ 26, 2y = 1

may be defined at any point of the material. It has the property that the length of its radius
in any direction is proportional to ds/ds’, for an element which lies in that direction in the
undeformed state. |

In a similar manner, the strain ellipsoid may be defined. This has the property that the
length of its radius in any direction is proportional to ds’/ds, for an element which lies in
that direction in the deformed state.

Elements of length, which are parallel to the axes of the reciprocal strain ellipsoid in the
undeformed state, become parallel to the axes of the strain ellipsoid in the deformed state.
Such elements, all having lengths ds in the undeformed state, have lengths A, ds, A,ds and
A5 ds respectively in the deformed state, where A, —1, 4,—1 and A;—1 are called the principal
extensions and A2, 13, A3 are given by the roots of the equation

[ 1+ 2¢,,—A? € €

Xy Zx
€ry 142¢,,—A* €yz = 0. (1-4)
€y €,z 1+2e¢,,—A2

The direction-cosines ({’,m’,n") of an element of length ds" in the deformed state can be
defined, in terms of its direction-cosines (/,m,n) and length ds in the undeformed state, by
the relations

, _ds
= 07[(1 +u,) l+u,m+u,n],

, ds
m =E[vxl+(l+vy)m+vzn], (1-5)

, ds
W= 15 [w,l4w,m+(1+w,)n].

Also, an element of volume dV situated at (x,y, z) in the undeformed state has a volume
7dV in the deformed state, where

14-u, U, u,
T=| v, I+v, v, |. (1-6)
w, w, 14w,

For an incompressible material, the volumes of an element in the deformed and un-
deformed states are equal, i.e.
7T=1. (1-7)
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DEFORMATIONS OF ISOTROPIC MATERIALS. 1 463
2. THE SPECIFICATION OF STRESS

In this paper, the Saint-Venant notation for stress will be used. Thus, the stress component
t,. denotes the force parallel to the x-axis, per unit area of the deformed material, which in
the deformed state is normal to the x-axis. The stress components #,, and ¢,, are similarly
defined. The stress component ¢,, denotes the force parallel to the y-axis, per unit area of
the deformed material, which in the deformed state is normal to the z-axis. The stress com-
ponents ¢, ¢,., t,,, t,, and ¢, are similarly defined. All the stress components refer to stresses
at a point of the material which is at (x, y, z) in the undeformed state.

Although we have defined nine stress components, only six of these are independent, on

account of the three relations (Love 1927, §47) of the type ¢,, = ¢,,.

3. THE STRESS-STRAIN RELATIONSHIPS FOR AN INCOMPRESSIBLE MATERIAL

The generalization of Hooke’s law, used in the mathematical theory of small elastic
deformations of isotropic materials, may be expressed by the six relations

Cox = (I/E) [(1+J) txx'—o-uxx_l_tyy_l_tzz)]’ CtC.l
J

(3-1)
and ¢,, = (2/E) (1+0)t,, etc,

where E is Young’s modulus and ¢ is Poisson’s ratio. (e
of strain for the small deformation.

The expression (¢/140) (¢,,+t,,-+t,,) in the first three of equations (3-1) is equivalent to
a hydrostatic pressure p (say). Also, for an incompressible material, we have approximately

et eyyte,, =0.

Therefore = 3,
Equations (3-1) then become

e ¢,,) are the components

x20 Cyys 1005 by

¢y, = (3/2E) (t,,—p), etc., and ¢, = (3/E)t,, etc. (3-2)

yz

If the strains are specified, then the pressure p in equations (3-2) may have an arbitrary
value, but if the stresses are specified, p is determined by the relation

b= ’:li(txx_l_ tyy + tzz) .

Equations (3-2) constitute a generalized statement of Hooke’s law for small deformations
of an incompressible isotropic material.

In choosing the stress-strain relationships for a highly elastic and incompressible isotropic
material, there are certain limitations which must be observed. We note that any homo-
geneous strain—and the most general strain may be considered homogeneous over an in-
finitesimally small region of space—may be considered to consist of a rotation, in which the
axes of the reciprocal strain ellipsoid are brought into the position of the axes of the strain
ellipsoid, followed by a pure homogeneous strain.

Now, in the rotation, no work is done on the element considered, and consequently stress-
strain relationships for the most general possible deformation may be derived from a know-
ledge of the stress-strain relationships for a pure, homogeneous deformation. The actual
form of this relationship will depend on the structure of the material considered, but for
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464 . R. S. RIVLIN ON LARGE ELASTIC

mathematical simplicity let us consider the case where stress is related to strain, in a pure,
homogeneous deformation, by the law

1+ 265y = (3/E) (txx—p), 1+26py = (3/E) (tYY_p),l

3-3
1+2¢,, = (3/E) (tzz—P), €yz=6zx = txy =0, J (33)

where X, Y and Z are the axes of the strain ellipsoid.

If, in the stress-strain relationships (3-2) for small elastic deformations, the axes X, YV

and Z of the strain ellipsoid are chosen as co-ordinate axes, we have
2exx = (3/E) (tyx—1)s 2eyy = (3/E) (tYY_p)’l (3-4)
252 = (3/E) (tzz—p), and ey, =ezy =eyy = O'J

It is seen that equations (3-4) are similar to equations (3-3) if eyy, ¢4y, ..., the strain com-
ponents for small deformations, are replaced by &y, €4y, ..., the strain components for large
deformations defined in §1. Thus, equations (3-3) form a natural generalization of Hooke’s
law to the case of large strains, and a material obeying such a laws will be described as an
incompressible, neo-Hookean material.

It will be seen that although p, in equations (3-3), has the nature of a negative hydrostatic
pressure, it is no longer equal to }(¢yx+¢yy+¢,,)—the mean tension at the point—as in the
theory of small elastic deformations. It can, however, be determined in terms of the stress
components, as explained in § 5. We shall, for convenience, refer to p as the hydrostatic
pressure at the point, although it should be remarked that any stress can be resolved into a
hydrostatic pressure and another stress in an infinite number of ways. The expression
L(tyx+typ+t,,) used in the classical theory for small elastic deformations is simply one choice
of this hydrostatic pressure, which loses its mathematical convenience when large strains
are considered. In the present theory it becomes more convenient to choose the hydrostatic
pressure as has been done here. It will be noted, however, that when the body is undeformed
and all the stress components are zero, p = —+E. This choice of the hydrostatic pressure
has no particular physical significance, but is merely mathematically convenient.

For a pure, homogeneous deformation, suppose that A;, 1y, A3 are the lengths in the
deformed state of linear elements parallel to the axes X, Y, Z respectively, which have unit
length in the undeformed state.

Then, by making (/,m,n) successively (1,0,0) (0,1,0) and (0,0,1) in equation (1-3)
we see that

B =142y, Ai=1+426y, and A= 142¢,,.

Equations (3-3) may therefore be rewritten

lyx = JSE’I% +p, byy = %E’Ig +p, 1

12 &0
trz=3EG+p and iy, =i, =1ly, = O'J

It has been pointed out already that a general deformation in an infinitesimal
region may be considered to consist of a rotation together with a pure, homogeneous strain.
The principal extensions A4, —1, 4,—1, 43— 1, in this pure, homogeneous strain, are the same
as those for the general, inhomogeneous strain, of which it forms a part. The stress-
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DEFORMATIONS OF ISOTROPIC MATERIALS. I 465

strain relations (3-5) will thus apply to the general deformation of an isotropic body. They
may be transformed to refer to any fixed, rectangular, Cartesian system of co-ordinates
(%,9,2).

Suppose the direction-cosines of the axes (X, Y, Z) of the strain ellipsoid, referred to the
co-ordinate system (x,y, z), are given by

X Y Z
7 ! 7
x| 000
7 !’ 7
y | m my mg
7 7 7

Then the components of the stress, referred to the axes (#,¥, z), are given, in terms of
those referred to the axes (X, Y, Z), by the equations

Lo = [P by + [Pty y 1520 25,

by = m2tyx+mP tyy+mitt,,,

L, = NP lyx+ 152 tyytns2t 4y,

by = mynyxx+mynytyy+minity g,
by = 0l tyx 05 l5tyy -+ 0515t

Ly = limybyy+lmytyy+lymst 5.

If (I,my,n;), for i =1,2,3, are the direction-cosines, referred to the co-ordinate axes
(x,y, z), of the axes of the reciprocal strain ellipsoid, corresponding to the axes of the strain
ellipsoid whose direction-cosines are (I;,m;,n;), then

lz, = (I/Az) [(1+ux) li+uymi+uzni],
;= (1/4;) [”}cli‘|‘(1+”y) m;+v,m] (3:7)
and i = (UA) [w d;+w,m+ (14+w,) n].

Substituting in equations (3:6) the expressions for (I, m],n]), given in equations (3-7),
and the expressions for (fyy,tyy,t,;), given by equations (3-5), and bearing in mind that

BB+ =mi+-mi+mi = nd+nd+n§ =1
and Limy+lymy+-lymg = myny+myng+mgng = ny by +nyly+nyly = 0,
the following ‘stress-strain’ relationships are obtained:
t = SE[(1+,)*+u + 2] +p,
by = $E[V2+ (1 +v,)2+02] +p,
t,, = $E[wi+wi+ (14w,)?]+p,
tyz = %E[vxwx—f— (1 +vy) wy+v5(1 +w2)]’
t,, = 3E[w,(1+u,) +w,u,+(14+w,) u,],
ty = 3E[(1+u,) v, +u,(1+v,)+u,0,]. .

X (3-8)
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466 R. S. RIVLIN ON LARGE ELASTIC

We see that the components of stress are, in general, no longer functions of the com-
ponents of strain, as defined in §1, but are given by other functions of the nine quantities
(g tys U, ...). It can readily be shown that

(1+u,)?+ud+u? = 1426,
V24 (1+40,)2 0 = 1426,
w§+w§+(1+wz)2 = 1+2¢,
: 4

, (39)
vxwx+ (1 +vy) wy—}—vz(l _'—wz) = €yz
wx(l +ux) "{—w_yuy*‘L (1 +wz) U, = €;x>
(1+u,) vx+uy(1 —H)y) +u,v, = e;y,
where ¢;,,€,,, ¢, ... are the components, relative to the co-ordinate system (x,y, z), of the

pure, homogeneous portion of the strain.
It may be noted that for a pure, homogeneous strain, we have (Love 1927, §33) the

relationships

v, =w

z y? w

L=u, and u, =v,

Introducing these into the expressions for (e,,¢,,...,¢,,) we obtain (6,6, ...,6,,)
respectively.
Introducing (3-9) into equations (3-8), we have

b = YE(1+26,)+p, t,= %Ee’yz,’
t;l/y = %E(l +26;/I/y) +Ib> tzx = %E(";xﬁ[ (310)
l,= %E(l +2€;z) +p by = %Ee;y‘

From these equations it is seen that, if the components of the pure, homogeneous portion
of the strain are specified, the normal stresses £, #,, and ¢,, are undetermined to the extent
of an arbitrary hydrostatic pressure p. On the other hand, if the components of stress are
specified, the hydrostatic pressure is no longer arbitrary and can be determined. Hence the
components of the pure, homogeneous portion of the strain can be found, in the manner

described in § 5.

4. THE STRESS-STRAIN RELATIONSHIPS IN SIMPLE EXTENSION AND SIMPLE SHEAR

(a) Simple extension

For the simple extension parallel to the x-axis of a body, the material of which is neo-
Hookean and incompressible, the stress-strain relationships (3-5) take the form

bow = %'E/I%"f"p: by = ~E/1%—|—ﬁ= 0,

vy

1
3
=3EN+p=0 and ¢,=t,=1t,=0.

tzz xy
Whence, since 4,4,4; = 1, we have
1 1
22— = = _1p>
A2 =2} = X and p 3E/1,'
This gives = —;—E(A%—n%).
1
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DEFORMATIONS OF ISOTROPIC MATERIALS. I 467
(b) Simple shear

For a simple shear, in which laminae of the material in the xy-plane move parallel to the
x-axis,  is a function of z only and v = w = 0; i.e.

u,#0 and w,=u,=v,=v,=v,=w,=w,=w,=0.
Introducing these results into equations (3-8), we have the stress-strain relationships for

the simple shear t=YE(L+u2)+p, t,=1t,=3E+p,

ty; =0, t,=%Fu, and ¢{,=0.

From these equations it can be seen that shearing stresses alone cannot maintain a state of
sumple shear in the material. If the stresses #,, and ¢,, are zero, then the stress £,, = 3Eu2 and if
the stress ¢,, = 0, t,, = t,, = —4FEu. Thus, two of the possible stress systems which can
maintain a simple shear #, in the material are:

(i) a shearing stress $Eu, in the xz-plane, together with a normal stress 1Eu? parallel
to the x-axis;

(ii) a shearing stress $Eu, in the xz-plane, together with two normal stresses each of
amount — $FEu? parallel to the y- and z-axes.

If the amount of shear is small (i.e. 2 can be neglected), we obtain agreement with the
theory for small deformations of a Hookean material, in which a simple shear may be
maintained by a shearing force alone.

5. THE DETERMINATION OF THE HYDROSTATIC PRESSURE FOR GIVEN STRESS COMPONENTS
From (1-6) and (1-7), it follows that

1+u, u, u, 1+4u, v, w,
2
T4 = Ve 1+v, v, XU, 14w, w,
w, w, 14w, | | u, v, 14w,

and 72 =1, for an incompressible material.
Carrying out the multiplication of the determinants and making use of the relations
(3-9), it follows that

1+ 2, €.y €
€y 1426, €, =1. (5-1)
€ €,z 1+42¢,
Substituting in (5-1) for (1+2¢,), ...,€,,, ..., from equations (3-10), we have
bx—D by Lox
ty  by—b . |=dES (5-2)
Lox by =P

This enables us to determine the hydrostatic pressure p corresponding to a specified
system of stress components and thus, from equations (3:10), to find the components of the
pure, homogeneous portion of the strain.

Equation (5-2) may be rewritten

[73 _ (txx+ tyy -+ tzz) pZ + (tyy tzz+ tzz txx + txx tyy . t;z - tzx_ t.gy) [)
— bty by 280, by — b 82, — b 12— 1) = — o7 B3, (5°3)

yzlzxxy xx‘yz yy “zx

VoL. 240. A. 58
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468 R. S. RIVLIN ON LARGE ELASTIC

This is a cubic equation in p and consequently has either one or three real roots, depending
on the values of the quantities

(txx + tyy -+ tzz) ’ (tyy tzz + tzz txx + txx tyy - t_12/z - tgx - t;%y)
and (taxlyyto 20, 0 b, —b 82—t 12—t 12 — 5 F3).

xxlyylzz yzlzxbxy xx'yz yy bzx
It might at first sight appear that in the case when equation (5-3) has three real roots,
giving three real values of p, there are, from equations (3-10), three possible sets of values
of the strain components corresponding to a given set of values of the stress components.
It can, however, be readily shown that this is not the case.

6. UNIQUENESS OF THE STRAIN COMPONENTS FOR GIVEN STRESS COMPONENTS

The coeflicients of —p2, p and —p° on the left-hand side of equation (5-3) are invariants
of the stress components as regards orthogonal transformations of co-ordinates.

If the axes of the strain ellipsoid (X, Y,Z) are taken as co-ordinate axes, we have
tyy = t,y = tyy = 0, and equation (5-3) becomes

p3_ (tXX+tYY+tZZ)p2+ (tYYtZZ_I_tZZtXX+tXXtYY)p'—tXXtYYtZZ - _Q%E‘:}:
or (b—txx) (P—2yy) (P—1t72) +57E° = 0. (6:1)

Equation (6-1) can, of course, be obtained directly from equations (3-5), noting that
A, ;45 = 1 for an incompressible material.

p
\
1
Ly //\m txx —p
£ \_/
/p‘ PPs
> il
Fioure 1

The distribution of the values of p satisfying equation (6-1) with respect to the values of
tyx, tyyand ,, can be determined in the following way. In order to fix our ideas let us assume
that tyy>t,,>1,,.

The solutions of equation (6-1) occur at the values of p for which the curve

P = (p—tyx) (0—tyy) (b—t22) (6-2)
intersects the straight line parallel to the p-axis
P =—E3, (6-3)

We note that the curve (6-2) intersects the p-axis when p = ty, ¢, and ¢, and that when
p—00, P— oo and when p.——c0, P—+—oc0. Also, we note that P is a single-valued function
of p. Consequently the curve (6-2) has the general form of curve I in figure 1.

Noting that E is always positive and that therefore the straight line (6:3) always lies
below the p-axis in figure 1, we see that, for sufficiently large values of E, the straight line
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(6-3) will occupy such a position as II, giving one point of intersection with curve I. There-
fore, for sufficiently large values of E, the equation (6-1) has only one real solution. For
smaller values of E, the straight line (6-1) may occupy such a position as III, and then equa-
tion (6-1) has three real solutions, given by the values p,, p, and p, of p for which the curve I
intersects the straight line III.

Itis quite clear, however, that one of these values p, must be less than #,,, i.e. less than any
of the three stress components lyy, lyy, ¢, While the other two values p, and p; must be
between ¢y, and fyy.

Equations (3-5) may be rewritten

%EA% = lxx—p, %E/I% = lyy—p,
%E/@ =lzz—p tlyz=1lzx=1xy=0.

Consequently, if p = p,, A3, 4} and A3 are all positive, giving rise to real values for 4,, A,
and A;. Whereas, if p = p, or p;, A and A% are both negative, giving rise to imaginary values
for A, and A,. Thus the values p, and p, for p do not correspond to real states of deformation,
and, for given stress components, the pure, homogeneous portion of the deformation is
uniquely determined.

7. THE STORED ENERGY FUNCTION

When an elastic body is strained, energy is stored in it. For small deformations of the body,
within the scope of the classical mathematical theory, this energy is determined com-

pletely by the strain components (e,,, €, €5 € €25 €,,) - When the deformations are large, the
energy stored in an element of the body is determined by the six components (e, €;,, €5, ---)

of the pure, homogeneous strain, which, together with a pure rotation, constitutes the strain
undergone by the element of the body. In the purely rotational part of the strain no energy
is stored in the element considered.

Since €, ¢€,,,¢,, ... are functions of the nine quantities u,,u,u, ...,w, speciﬁed by
equations (3-9), the stored energy may be considered to be a function of these nine
quantities.

In order to find an expression for the stored energy in terms of these nine quantities, if
the stress-strain relationships for the material are specified, consider an elementary cuboid
of the strained material, situated at (£,7,{) = (x+u,y+v,z-+w), whose edges are parallel
to the co-ordinate axes (x,y, z) and have lengths (4&, 4y, A0).

If the displacement configuration (u,v,w) undergoes a small change (d, b‘v dw), then the
edges of the cub01d undergo changes of length §(4u), §(4v), §(4w), where

AE = Ax -+ Au, A77 =Ay+4dv and A{ = Az+Aw.
Second and higher degree terms in §(4u), §(4v) and d(4w) are neglected.

The forces acting over these displacements are
b A AL+t ALAE -1, AE Ay, -
t, An AL, ACAE+-t,, AE Ay

and b An AL, ALAE+-t, AE Ay,
58-2
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470 R. S. RIVLIN ON LARGE ELASTIC
respectively. The total work done in the virtual, relative dlsplacements (0(4u), 0(Adv), o(dw))
h
' thus WL = (1, A1 A+, ALAE-+ 1, AE A7) D(du)
+ (8, Ap AL+ 1, ALAE+1,, AE A7) 6(Av)
+ (Lopdn AL+, ATAE + 1., AEA) S(dw). (7-1)

Equation (7-1) may be rewritten

(du) 8(du) 8(Au)
8W [xx Ag +txy A” +txz Ag

i 2, A0 4, X0
8(dw) d(dw) 0(dw)

+1 AE +1, Ay +1., AT ]AxAyAZ (7'2)
If W is the elastically stored energy in the deformed state, per unit volume (measured in
the undeformed state),
S — OW 8(Au)  OW 8(du)  OW &(Au)
~ Jug AE 0w, Ay T Oug AC
+0W8(Av)+3W8(Av) W &(Av)

dve AE " dv, Ay (?vg A¢
IW d(dw)  IW §(dw)  IW §(4w)

T ow, A Taw, Ay Tow, AT (73)

where dW/du, is defined as lim JWW Az(éu) , with similar definitions for dW/du,, etc. It is
Su—>0
4E—0

noteworthy that & W/ A(u) is not equal to & W/ 86’%), since 4§ is dependent on du. Thus,

lim éW A(du) ; is not equal to (?W/(?( )
du—>0 Ag

A0

The energy stored elastically in the element of volume considered, as a result of the virtual
displacement, is W Ax Ay Az.
For equilibrium, v SWAx Ay Az = oW, (7-4)

for all allowable configurations of the quantities (d(du),d(4v),d(dw)) and for all ratios
between 4¢, Ay and A4{, where 8] and §W are given by equations (7-2) and (7-3) respectively.
Consequently,

LW, LW 1w
T dug’ w =g (?u ¥ (?ug
1w 1w 10w
yr T dvg’ w1 (?v vz = 1 (?vc
10W 10W 1dW

2% Tf?wg Y Tﬁw 2z Tc?wg
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Let us consider, for example, the first of these relations. From the definition of dW/du,,
1 .. A(bu)
¢, =~ lim 0W -
= a8
250
Now, since §=x+tu,

A8 = (1+u,) Ax—l—uyAy—[—uzAz.

1. w
Thus, b =~ ;1141_{10 A(5) [(1+u,) Ax+-u, Ay +u,Az]
Ax, Ay, 4z—0
1 ow W

T

ow
[t E7R P Tl b
Here, dW/du, denotes (?W/ 0(3—3) , 0W|du, denotes 0W/ 0(3—:), and so on.

It should be borne in mind that

lim w4 _ fim 3W/3(A—“),
Su—>0 Ax Su—>0 Ax
Ax—>0 Ax—>0

since 4x is independent of du.
In a similar manner, expressions for the other components of stress can be found. Thus

txx=}:(1+ux>%g+uy%’:+uz%—z’ﬂ, ’
txyzi:vx%’:ﬂuvy)%wz%z ,
txz=;:wx%:+wy%+(l+wz)% ,
tyxzé:(l—l-ux)%—l;lj—i—uy%—l—uz%],
tyy“;:vx%fﬂlwy)%wz%], & (7-5)
tyz=;:wx%+wy%g+(l+wz)%],

o= £ G G

to =7 [0+ 0) G050 |

t, :% :wx%iery%Jr(lerz) %]J

These equations can also be used to determine dW/du,, dW/du,, etc., in terms of the
quantities u,, u,, u,, €tc., if the stress-strain relationships are known.
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472 R. S. RIVLIN ON LARGE ELASTIC

‘Thus, from the first three of these equations, we have, making use of such relationships as

a7 ar a7
(LH0) gy Ve gy, 0 g, =7
o7 or + or
and g, T 5y T g,

ow or or or
M“— xxa +txya +txza

ow or or or
B@': xxa +txya +txza

ow (?T 07 (97
gu, gy T gy Tl gy

From the second three equations of (7-5)
ow . or or ar
v, by ou,
ow . or (?T or
du, = b, e, e,

(?W a7 ar 01
a0, Ll Ty, Tl g

and from the remaining three equations

ow or or or

5@’— zxﬁ +tzya +tzzaw

ow or ot (?T
a—wy_ zxau +tzya +tzza

ow or (97 (?
?Tu_};*' zxau +tzya +tzza

= 0,

Tl gy Tl

(7-6)

(7-8)

(7-9)

The relations of the typé t,. = t,, impose on the p0351ble forms that can be taken by W,

the limitations

8W (?W (9W BW

(?W (?W (7W aW (?W

(1- )a SR I Y R
ow ow ow ow

and e guy TR Gy gy, = () gy +yﬁv +”z7a;;-

8. THE STORED ENERGY FUNCTION FOR AN INCOMPRESSIBLE MATERIAL

(7-10)

In §7 the relations between the stress components and the stored energy function are
obtained on the assumption that the components du, dv and dw of the displacements undergone
by the various points of the body are independent. For an incompressible material this
assumption is not valid and the incompressibility condition imposes a restriction on the

allowable values of §(4u), §(4v) and d(dw).
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For an incompressible material Sr) =f(1),

where f(7) is an arbitrary function of 7.
Therefore, in any virtual deformation of the body,
if(r) = 0, (8:1)
at all points of the body.
Equation (8-1) is equivalent to
) [ﬁ 8(4u) ‘_(?1 8(Au) | 07 8(Au) | 91 8(Av) (LT&(Av) a7 §(4v)
dug  AE , Anouy AL v, AE , An v AL
ar 0(4w) (37 0(Adw) =~ ot 3(Aw):| _ )
You, a8 Tow, dy Tow, st 170 &2

In this equation, we have written f*(r) = f”(1), and the operators d/du;, d/du,, ... are defined
as in §7.

Thus, for an incompressible material, equation (7-4) is valid for values of 0(4u), d(4v)
and §(4w) for which equation (8-2) is valid and for all ratios between 4¢, A9 and 4¢{. Con-
sequently, the coeflicients of §(du)/4E, §(4u)/4y, ... in equations (7-4) and (8-2) are pro-
portional. In equation (7-4), 8W; and 8W are still given by the expressions (7-2) and (7-3)
respectively, but now 7 = 1.

oW oW _ow
Thus b (?ug [) (?ug by (?u +‘b (?u bz (?u ‘b 0u§
aw  or 4 _aw
I PRRE & TR A TN “’av he =, f’avg
ow or oW 0W or
fzx:%;‘H’a_wg, Ly aw +p6w by = 5117‘;4"?35;,

where p is an arbitrary constant.

Here again we note that the relations ¢,, = ¢,,, etc., of § 2, must be obeyed.

Following out the argument of §7, it can be seen that equations (7-5) must now be
replaced by equations of the form

b = (14u,) (gwﬂb du, ) ((ZZV+‘[) du ) (((??uw+p du )

..........................................................................

These equations may be rewritten, employing relations of the type (7-6), as

W, W W
b = (1) Gty Gy 0 )

............................................... l (8'3)

...............................................
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474 R. S. RIVLIN ON LARGE ELASTIC
From equations (8:3) it is quite clear that, for an incompressible material, dW/du,,
oW |ou,, ..., 0W/[dw, are given, in terms of the components of stress, by equations (7-7), (7-8)

and (7- 9) , in which ¢ and ¢,, are replaced by ¢,,—p, tyy —p and ¢,, —p respectively, giving

X% yy

ow or or
du, gy Ty “xzaw /’au

aw a7 ar or
5@ - xx(?u +t"y8v +t“3w p&u ete.

(8-4)

9. THE STORED ENERGY FUNGTION FOR AN INCOMPRESSIBLE, NEO-HOOKEAN MATERIAL

The stored energy function for an incompressible, neo-Hookean material is obtained in
two ways. In the first of these, the stored energy for a general deformation is obtained by
determining the stored energy for the pure, homogeneous deformation which forms part of
it. In the second, the stored energy is calculated directly from the stress-strain equations
(3-8), using the relationships (8-4).

Method I. Suppose we consider an element of volume of the material which, in the un-
deformed state, is a cube of unit edge. Suppose further that it is strained in such a manner

that in the deformed state it is a cuboid whose edges are parallel to the axes of the strain
ellipsoid and have lengths 4,, 4, and A respectively, such that

L2, = 1, (9-1)

satisfying the incompressibility condition.

Let W be the energy stored elastically in the element, in the strained state. Then, W is the
work done in straining the material quasi-statically to its final state of strain. From equations
(3-5) it is seen that when the dimensions of the element are A; X 4, X 43, the stresses acting

are given by

tyx = YEN+p, tyy=3EN+p, | (9-2)
ty;=3tE4p and ¢, =15 =ty = O'J

The element is thus subject to the action of three mutually perpendicular forces f;, f;
and f;. These are given by

Ji=1texlods, fo=1tyydsd; and  f3=1,,4,4,,

since A,45, 434, and A, A, are the areas of the planes over which the stresses #yy, £,y and ¢,, act.
Introducing the condition (9-1) and the formulae for ¢y, ¢, and ¢,, given in equations
(9-2), we have

fi=3En+E, =B+ L, f—aEa L
4 4 2

The work done in straining the element of volume from dimensions A; X 4, X A5 to dimen-
sions (A;+04;) X (4,4 01,) X (A3+0A3) is

J10A, 415005413025

ie. LB, 8, 4+ A58, 41,80 )+p( 1+‘?2+‘?)
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Thus, the work W done, in straining the material quasi-statically from dimensions
1x1x1 to dimensions A, X A, X A, is given by

A Az As A A2 A3
W= 38{ [“ [l + [ 2y o ‘9—1+J &—l‘f @3}
1 1 1 1 /]‘l 1 /12 1 /13
LB 2343 3). (9-3)

W is the stored energy per unit volume of the strained material when the principal exten-
sions are 4, —1, ,—1, 4;—1, for as has already been seen in § 3, no work is done on the
material in rotating the axes of the reciprocal strain ellipsoid into the directions of those of
the strain ellipsoid.

Now, 4;, 4, and A4 are given by the roots of the equation (1-4).

Thus B +A34+23 = 3+2(6,, 16, 16€..)-
Whence, from equation (9-3), W = §E(e,,+¢,,+¢..). (9-4)

Method 1I. Substituting the stress-strain relationships (3:8) for an incompressible, neo-
Hookean material in equations (8-4), we find that
ow oy 0T or
ou. = YE[ (0wt B g () o, (1 o) fue 57

X

F ) Fuy a4 () w} 7],

oW or a
= %E[{(l —]—ux)2+u§+u§}a7y+{(1 Fu) v, (140, +uz”z}(7,;;

Y
+{w,(1+u,) +w,u,+ (14+w,) u} (}%], etc.
Yy

Making use of relations of the form (7-6), we obtain

ow ow ow - )

. 1E(14-u,), ~a——uy = 3Eu,, o Eu,,

ow ow ow

a0, Mo g = AE(RY), G =B (9:5)
ow ow ow

qu, ~ Mo gy, =M gy = AR

Integrating these partial differential equations, we obtain

W= BE[(L+u) ol (140,) o2 ud - (1+w)? ] —3E. (9:6)

The constant of integration is —4F, since, when u, = u, = ... = w, = 0, the deformation
corresponds to a displacement which is possible in a rigid body and therefore W = 0.
From equations (1-1) it can readily be seen that equation (9-6) may be written

W = %E(exx—l_ 6_1/_1/ —l_ 622) >
in agreement with the result (9-4) obtained by Method I.

Vor. 240. A, 59
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476 R. S. RIVLIN ON LARGE ELASTIC

10. COMPARISON OF THE STORED ENERGY FORMULAE FOR THE
CASES OF LARGE AND SMALL DEFORMATIONS

The formula for the stored energy in the case when the material is subjected to a small
strain (e,,, €,,, ¢.., €,., €., ¢,,) is (Love 1927, § 69)

XX Vyyd “zzd Vyzd Vzxd Y xy

2W = (A =+ 21”) (exx_‘_ eyy + ezz) 2 +lu(e_%/z + €§x + eﬁy - 4eyy €z 4ezz Crx— 4exx eyy) ) (10. 1)

1 E ok
= - ———— /{ _ .
where r=311s and (170 (1—20)
For an incompressible material equation (10-1) reduces to
W=3E(e, +e2 +e,—4e, e, —4e e, —4e, e,). (10-2)

This equation does not at first sight appear to be in accord with equation (9-4). However,
it will be shown that equation (9-4) does in fact reduce to equation (10-2) when the strains
are small. ‘

It is seen in § 9 that equation (9-4) is equivalent to equation (9-3). Writing A, = 1 +¢,,
Ay = 14-e,5, A3 = 1+e¢5, where ¢, ¢, and ¢, are the principal extensions for a small strain,
we have

W = GE[2(e,+ey+e5) + (e +ex+e5)> —2(er 65+ €pe5+€5¢,) ] (10-3)
¢y, €y, €3 are the roots (Love 1927, §11) of the equation
Cx =€ 3y 3
3¢, €,—¢ %6, |=0
B Bl G
Now e1teyte5 = —(e,65Feye5+e5¢))

for an incompressible material, and
_ L(p2 12 1 p2
€169 + 214 + €361 == €yy eyy + eyy s + Cr2Cix % <eyz + Cox + exy) .

Introducing these results into equation (10-3) and neglecting second degree terms in
(e;-+ey+¢5), we obtain
W=%E(e,+e +e2, —4

€z

4:ezz Cox 4exx eyy) s

e?/?/
thus proving that the formulae (9-4) and (10-2), for the stored energy in the cases of large and

small strains of an incompressible material, are consistent.

11. STRESS-STRAIN RELATIONSHIPS OF IDEAL AND REAL RUBBERS

The kinetic theory of the high-elasticity of rubber-like materials, which was originally
put forward by Meyer, von Susich & Valko (1932), has been developed to a considerable
extent by later workers. In this theory, an ideal rubber-like material is considered. This
consists of a number of high polymeric chains, permanently cross-linked at a certain number
of junction-points along their length, to form a network. The segment of any chain between
two consecutive junction-points along the chain possesses a large number of rotational
degrees of freedom, so that if the two junction-points are considered fixed, the segment can
take up a large number of possible geometrical configurations under the influence of its


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATIONS OF ISOTROPIC MATERIALS. I 477

thermal motion. The entropy of a segment, for any specified positions of its terminating
junction-points, is considered to be proportional to the logarithm of the volume of the
rotation-configurational phase-space which it fills. The stored elastic energy of the deformed
rubber arises from the fact that the average entropy of the segments in the deformed state
is smaller than that in the undeformed state. A review of the general physical basis of this
theory has been given by Treloar (1943 4) and, more recently, by Flory (1944).

In applying this model of the mechanism of high-elasticity, Wall (1942 4, b) has assumed
that all the chain segments are of equal lengths and that the material is incompressible.

The assumption of incompressibility will be justified if the strain produced by a pure
hydrostatic pressure is small compared with that produced by a normal or tangential
traction of equal magnitude. Measurements on the compressibility of rubbers, by Holt &
McPherson (1937), bear out this assumption. It will, of course, be generally true for any
highly elastic material which is neither cellular nor porous. Certain further plausible
assumptions are also made in order to make the problem tractable to calculation. Flory &
Rehner (1943) also make the assumptions of uniformity of segment length and incom-
pressibility, but make somewhat different simplifying assumptions from Wall’s in carrying
out the analysis. In both the analyses of Wall and of Flory & Rehner, the assumption is
made that the chain segments are not nearly fully extended.

Treloar (1943 6, 1946) has used both the methods of Wall and of Flory & Rehner to obtain
the stored energy function for an ideal rubber-like material subject to a general, pure,
homogeneous strain and has shown that both methods lead to the same result. This is

W = LNKT(A2+ A3+ A3—3), (11-1)

where N is the number of segments per unit volume, £ is Boltzmann’s constant and 7'is the
absolute temperature. This formula has the same form as (9-3), which gives the stored energy
function for an incompressible, neo-Hookean material, and we reach the important con-
clusion that the ideal rubber-like material, as conceived by Wall, Flory & Rehner and
Treloar, is an incompressible, neo-Hookean material. For the ideal rubber-like material
the elastic modulus E is given by 3NkT. However, from the nature of the simplifying
assumptions made in the statistical treatment, it is not to be expected that the quantity
3NkT has any exact significance in practice. In comparing equation (11-1) with experi-
mental results on real rubbers, it is to be expected that, at most, the shapes of experimental
and theoretical stress-strain curves will be similar.

The experimentally obtained load-elongation curves for certain vulcanized natural
rubbers, under simple elongation and under pure shear, have been compared by Treloar
(1944) with the appropriate formulae obtained theoretically as special cases of (11-1). It
was found that the agreement was moderately good up to fairly high strains. At extreme
values of the strain, when the chain segments are approaching full extension, the theoretical
and experimental curves depart considerably from each other. This is to be expected in
view of the assumption, which is made in deducing (11-1), that the chain segments are not
nearly fully extended.

Gee (1946) has compared the formula (11-1) with experimentally obtained data for both
swollen and unswollen, vulcanized rubbers, in simple extension. He has found that the

agreement becomes more and more exact, over the range of elongations where the chain
59-2
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478 R. S. RIVLIN ON LARGE ELASTIC

segments are not nearly fully extended, as the amount of the swelling agent is increased.
The detailed explanation of these results is not yet clear, but in general it is to be expected
that the assumptions, made in the statistical-mechanical derivation of equation (11-1), will
be more accurately valid in a swollen rubber than in an unswollen one. For, the van der
Waals forces between the chain segments and the phenomenon of crystallization under
strain, which exist in a real rubber, are not taken into account in the statistical-mechanical
treatment of an ideal rubber-like material and will, in general, be reduced by swelling.

It appears from the remarks made in this section that there is considerable justification
for developing the mechanics of rubber-like materials on the assumption that they are
incompressible, neo-Hookean materials. However, the departure of experimental results,
from theoretical results so obtained, might be expected to be large when the rubber is in
a condition of very large strain or when crystallization has taken place. Also, considerable
divergences are to be expected in the case of dynamic conditions, where the van der Waals
forces between the segments may have an important effect.

PART B. THE EQUATIONS OF MOTION AND BOUNDARY CONDITIONS
12. INTRODUCTION

Two methods have been used for deducing the equations of motion and the boundary
conditions for an elastic body, which suffers small strains under the action of body forces
(X, Y, Z) per unit mass and surface forces (X,,Y,, Z,) per unit area of surface, parallel to the
axes (x,y,z) of a fixed rectangular, Cartesian, co-ordinate system.

In the first of these methods, the forces acting on an elementary cuboid of the strained
material, with its edges parallel to the co-ordinate axes, are resolved to give the equations
of motion in the form (Love 1927, § 54)

0% ot,, o0t Ot )
Pop ZPX+W c?y Y+ 8 etc., (12-1)

where p is the density of the material.

The boundary conditions are obtained from the consideration that the components of
stress at the surface must be in equilibrium with the applied surface forces (Love 1927, §47).

In the second method, due to Kirchhoff (Love 1927, § 115), the equations of motion are
deduced from the Hamiltonian principle, by the methods of the Calculus of Variations.
They take the form

2
o =g ) oyl e ae) e 122)

Here W is the elastically stored energy per unit volume of the material, measured in the
undeformed condition, at the time ¢ and (e,,, ¢,,, ...) are the components of strain defined by
equations (1-2).

The boundary conditions are also obtained from the Hamiltonian Principle in the same
analysis.

For large strains, neither equations (12-1) or (12-2) apply. However, analogues of both
methods can be used to deduce the appropriate equations of motion and boundary conditions.
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DEFORMATIONS OF ISOTROPIC MATERIALS. I 479

13. THE EQUATIONS OF MOTION

Let us consider the motion of an clementary cuboid of the strained material, situated at
& n,8) = (x+u,y+v,z+w) and having its edges, of length AL, Ay, AL, parallel to the
co-ordinate axes ¥, ¥, z respectively.

The difference between the forces, due to the stress in the material, acting on opposite
faces of the cuboid, parallel to the x- ax1s, is

ot,,
G :|A§A AL,

The component of the body forces, actlng on the cuboid, parallel to the x-axis is
(1/7) pAE Ay AL X, where p is the density of the material in the undeformed state, so that the
mass of the cuboid is (1/7) pAEAy AL.

Applying Newton’s Second Law to the component of motion of this cuboid in a direction
parallel to the x-axis, we have

;pAgA;;Agg%= "y+‘7t§ AEAn AL, (13-1)
This yields the first of the equations of motion:
Yor — [ 5 )
Sags Ok a2 (13:2)
L=z "a;g atZ”aatg I

The second and third of equations (13-2) can be obtained in a manner similar to the first,
by applying Newton’s Second Law to the motion of the cuboid parallel to the y and z axes
respectively.

14. THE BOUNDARY CONDITIONS

At the boundary, the x, ¥ and z components of the stress balance the applied surface
forces. Thus, let (X, Y,, Z,) be the components, parallel to the co-ordinate axes, of the surface
forces, per unit area of the surface measured in the undeformed state. The corresponding
components of the surface forces, per unit area of the surface, measured in the deformed
state, are X, (dS/dS"), Y,(dS/dS") and Z,(dS/dS"), where dS’ is the area in the deformed state
of an element of the surface, which has an area d$ in the undeformed state.

Equating these components of the applied surface forces to the corresponding com-
ponents of the stress, we have the boundary conditions at the surface

dS ’ ’ ’
X"F ={,,cos (x,v )+txycos (y,v') +t,,cos (z,V'),
Y ds‘ ’ ’ !
b g7 = lyxCOS (x,") +1,,cos (y,v") +1,,cos (z,V'), (14-1)
dS ! ’ ’
Z"d_.ST’ = t,,cos (x,V) +1¢,,cos (y,v') +¢,, cos (z,V'),

where cos (x,v"), cos (y,v'), cos (z,v") are the direction-cosines of the normal to the surface
in the strained state. ’
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480 R. S. RIVLIN ON LARGE ELASTIC

15. THE VARIATIONAL EQUATIONS OF MOTION FOR LARGE DEFORMATIONS

W is considered to be a function of the nine partial derivatives of the displacement
COMPONENLS (U, Uy Uyy Vyy Uyy Uy Wy W,y W)

Now, let T be the total kinetic energy of motion of the body at any instant £, let V be the
total energy stored elastically in the body and let 6/ be the work done by the externally
applied body and surface forces when the displacement configuration is varied by a small
amount. It follows from the Hamiltonian principle that

t 4
8| (T—V)dt+| oW dt=0, (15-1)
to to

where the operator § denotes any small variation of the displacement configuration from
that obtaining at the instant of time ¢ It is assumed that the variations (du, dv, dw) of the
displacement components (, v, w) are zero throughout the body at £, and #,. The integration
is carried out between any two arbitrary times ¢, and ¢,. Now

a 2 a 2 a 2
-l 3
It follows (Love 1927, §115) that
h b 0%u 0% 0w
of it =~ a p(a—ﬁ 8u—|—W&)+W§w) dr,

to

(15-2)

bearing in mind that (du, dv, dw) are zero at ¢ = ¢, and ¢ = #;. The volume integration is
carried out over the whole volume of the material in the undeformed state.

Let (X, Y,Z) denote the components of the body forces per unit mass of the material,
situated at (x,y,z) in the undeformed state of the material. Let (X,.,Y,,,Z,) be the com-
ponents of the surface forces, per unit area of the surface in the deformed state. »" denotes
the direction of the normal to the deformed surface. Then

W, — f p(X0u+ Y 8o+ Zow) dr + f (X, du-+Y,, 8v+2,,w) dS". (15-3)

Here again the volume integration is carried out over the whole volume of the material in
the undeformed state, but the surface integration is carried out over the surface of the
deformed material, dS” denoting an element of area of this deformed surface.

We may rewrite equation (15-3)

W, = f p(XOu-+ Yov-+Zow) dr+ f (X, 0u+Y,, v+ Z,, bw) %ds, (15-4)

where dS is the area of an element of the undeformed surface corresponding to the element
dS’ of the deformed surface. The surface integration is now carried out over the whole of
the surface of the undeformed body.

The elastically stored energy V=de7. Bearing in mind that W is a function of

(uy uy, Uy ...), we have
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WDy W
SV — f{a 37 005, 2, (6u)+...}d7

= [l ay{‘ZZ"ﬁ}%{%?au}%{%—?’%:%{%%}+a‘l{‘2”’6v}
%{%%w}%{gf }+8z{aw ofJor—[[3s . }ay{au}+az{au |Jouer

f[‘?x{av}Jray{av} 32{30 }]M f[ax{aw} 0y{8w: az{aw}]5 war.

Applying Green’s theorem, we find that

f[ax{ }+8y{gz/8}+(%{3?/8}+0x{ bof . Jar

_“:8 cos (x, v Wcos (y, )+38Wcos (z,v ]&ta’S

+J|: cos (%, v +gwcos (y, )—I—%I;V ):I(?vdS

—I—f[a?vx cos (%, v) +%Z—l£cos (y,v) —I—Z—Zcos (z, V):l dwdS,
where (x,v), (y,v) and (z,v) denote the angles between the normal to the surface in the
undeformed state, at the element 4§, and the co-ordinate axes x, y and z respectively.
Introducing this result into equation (15-5) and substituting in (15-1) for ¢ “Ta from
equation (15-2), for 0W] from equation (15-4) and for ¢V from equation (15-5), v:foe have
f a’tf (32‘3 +gt;’8 —!—%Z;b‘w) dr

dtﬂ:a cos (%, V) Wcos (y, )+%Z’—/cos (z,v)]b‘ua’S

dtﬂ:& cos (%,v) Wcos (y,v)+ 8W

dtﬂ:T cos (x, V) —l—g—m—/cos (y,v) +%~M~/cos (z, V):l owdS

dtf[ﬁx{ } 0y{3u}+ai{ z}]3d
dtf[ax{ } ,;y{av }+(%{%:}]3vdr
a5 G+ 5 o)+ 2 ()

+ " ds p(Xou—+Yov+Zow) dr
to

: ds’
[ ar f (X, 0utY, 802, 0w) %, dS — o. (15-6)
. as
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482 R. S. RIVLIN ON LARGE ELASTIC

The components (0u,dv, dw) of the infinitesimally small virtual displacements at each
point may be chosen arbitrarily, subject only to the conditions that they are continuous
functions of the position of the point and of time and they are consistent with geometrical
considerations. Also, we have already assumed in deriving equation (15-6) that

ou = 6v = dw = 0,

when ¢ = ¢, and ¢ = ¢,. Since the limits ¢, and ¢ may be arbitrarily chosen, let us choose
them to be separated by an infinitesimally small time interval 4¢, during which time the
integrands are substantially constant. In this time interval, suppose that dv = dw = 0, at
all points of the body, and du = 0, at all points except over a small element which, in the
undeformed state, has volume Ax x Ay x Az and is situated at (x,y,z). In this element du
has a constant value, infinitesimally small compared with 4(x+u), 4(y+v) and 4(z4w),
except in an infinitesimally small region at the surfaces of the element of thickness greater
than du. In this region du falls to zero. Also, du, dv and dw are constant throughout the time
interval 4¢, except in infinitesimal intervals of the time, small compared with 4¢, at £, and ¢,.
In the small intervals of time and volume considered, the coefficients of du in the integrands
of equation (15-6) may be considered constant, giving the first of the three equations of

motion
0%u a (owy ad (ow\ d (oW
Pk =P el + oy | 72w
0% a (owy ad (W)  d (oW .
Pae = rY *5&{%;}%7{%;}%2{%;} (15:7)
0%w a (W) a (@wy ad (oW
and P9 =2 ozl * oy 72 )

The second and third of these equations are obtained in a manner analogous to the first.

16. ALTERNATIVE FORM OF THE BOUNDARY CONDITIONS

The boundary conditions may also be obtained from equation (15-6). Thus, we take
dv = dw = 0 at all points of the body and du = 0 at all points, except over a vanishingly
small area of the surface. Again, du is constant over this area and infinitesimally small com-
pared with the linear dimensions of the area. It falls to zero in a distance at the edges of the
area greater than, but comparable with, the constant value of 0« and similarly in a direction
normal to the surface. The variation with time in the interval At (= ¢, —#;) is similar to that
described in the previous section. This gives

ds’

iw ow ow
EEX”' =X, = %;cos (%,v) +??7¢; cos (y,v) +%;cos (z,v).

Two further boundary conditions may be similarly derived, giving the three boundary

conditions )
ow ow ow
X, = . cos (x,v) +%; cos (y, V) +5Ez— cos (z,v),

y =W (16:1)

Y Ov,

~

cos (x,v) -+ %?—/cos (y,v)+ %—Vgcos (z,v),

Yy vZ

ow ow ow
Z,= T €O (x,v) T 5. €08 (y,v) + . €08 (z,v).

¥ Y z


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATIONS OF ISOTROPIC MATERIALS. I 483
For a free surface, we put X, =Y, = Z, = 0 in these equations.
If the surface has the equation Sflx,y,z) =0,

we note that the direction cosines of the normal to the surface at (%, y, z) are proportional to
(foo Sy S2)- Substituting these for cos (#,7), cos (y,v) and cos (z,v), the boundary conditions
for the free surface become

ow . ow . oW
gg;fﬁrEwa%:fz =0,

W AW . W
“ﬁfx+%ﬁ+ﬁﬂ =07 (16-2)
oW
and g f"+0w Jot g Se =0

17. CORRELATION OF THE EQUATIONS OF MOTION

In § 13, the equations of motion (13-2), of a highly elastic material, are obtained from the
consideration of the forces acting on an element of the strained material. In §15, the
equations of motion (15-7) are obtained from the Hamiltonian Principle. It can be shown
by the use of the expressions (7-7), (7-8) and (7-9) relating the stress components and the
stored energy that these two sets of equations are identical.

Thus, consider the equation

82u d (@wy a (@w\ a (0w

Por = /’X+ax{au }+8y{3u }+0z{(?u )
Substituting in this the expressions for dW/du,, IW[du, and W [du,, given in equations (7-7),
it is seen that this equation may be rewritten

?u (?T or
Pog P4 =5 ["xﬁu Fhy gy "zaw:l_l_(?y[t“&'u +%a e G,

ar
3z [‘xxa “xyav “xzaw]

or d¢,, Or oL, Odrat, O (?t Jr dt,, dr dt,,
= u, 0x 9w, 9y u 0z "o, dx v, 3y T du, 0z

or d¢,,  dr dt,, Ot 9t
+c9w Ox +3w (? +¢?w 9z - x"l:&'x((?u )+¢?y( ) 02(8u )]

™ g‘x(ﬁv‘)‘ @(av)+az<0v )]H"Z[ﬁx( ) 0y(0w>+0z(£vr):]

(17-1)
Now, %(%)4"%((%)"“(%((%)50,
3ol a5 )+ ) =0
and 5 o)+ ) 3 ) =0

Vor. 240. A. 60
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Also, introducing the operational relationships

9 9d da da
% = ax0E T ax oy T axat
A B
= (1+ux) gg_i_vxa“—l—wxa—é”
a9
XN 1)
dy — dydE " dydy " dyal
r (17-2)
=u 9 +(1+v, ) (? g
ygg ”3§
| J 9D Iy d xa
and 3z~ az0t Tazay Tazac
i d 9
= uzgg+”z;977+(1 +w,) e
equation (17-1) becomes
d%u B or or 37 drat,,
PE§ZPX+(L“W§“+%m¢ zm +[xa**L+ v) gu *zw]av
B (97 (?’r ar BT (?l
~ (?T ot,,
. _ xy —
+ ”xav‘*(1+”@)av zav "*[ a () 5 |5
or o o, 0 0t
e g g, T z&u +[ ) gw, T du, |y
- or ar at,,
+ xa "’— Yy G- _'—(1_" z)a ac ' (17-3)

Now, noting relatlonshlps of the type (7-6), equation (17-3) becomes
pdu _p dt, 3txy at
roe ~ 1t og +a§’

which is the first of the equations of motion (13-2).
Using a similar method, it can be shown that the remaining two pairs of equations of
motion are in agreement.

18. CORRELATION OF THE BOUNDARY CONDITIONS

Equations (7-7), (7-8) and (7-9) can also be used to show that the two forms (14-1) and
(16-1) for the boundary conditions are in agreement.
Thus, consider the equation

ow ow ow
&= gu, cos ()4, cos )+, cos(50). (18-1)

cos (x,v), cos (y,v) and cos (z,v) can be expressed in terms of cos (x,7"), cos (y,v") and
cos (z,7’) in the following manner.
Let f(%,y,z) = 0 be the equation of the surface of the body in its undeformed state.
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Since (£, 77, {) are the co-ordinates of a point in the deformed material, which lies at (x, 7, z)
in the undeformed state, the equation of the deformed surface is

f(g_% 1]——U,C—fw) = 0.

The direction-cosines cos (x,v), cos (y,v), cos(z,v), of the normal to the undeformed

surface at (x,y, z), are
(2SI St L)

The direction-cosines cos (x,v"), cos (y,v'), cos (z,v'), of the normal at the corresponding
point of the deformed surface, are

(SE+f7+/8)~ (fg,ﬂ,,fg)-

2
Now Y ar 18-2
ferfee T ez
where dv is the length of the perpendicular from the point (x —dx, y — dy, z— dz) to the tangent
plane to the surface of the undeformed body at (#,y,z) and dv' is that from the point
(§—dE, n—dy,{—d() on to the tangent plane to the surface of the deformed body at (£, 7, {).
Employing the relations (17-2) and (18-2), we obtain
cos (x,v) dv'[dv = (1+u,) cos (x,v") +v,cos (y,v') +w,cos (z,v'),
cos (y,v) dv'[dv = u, cos (x,v") + (1+v,) cos (y, V") +w, cos (z,V")
and cos (z,v) dv'[dv = u,cos (x,v') v, cos (y,v') + (1 +w,) cos (z,V'). (18-3)
Substituting in equation (18:-1) for dW/du,, IW[du, and dW/du,, from equations (7-7), and
for cos (x,v), cos (y,v) and cos (z,v), from equations (18-3), and making use of relations of
the types (7-6), we obtain
= (dv/dv") 1[¢,, cos (x,v") +¢,, cos (y, V') +2,, cos (z,V')]. (18-4)

as’ av’

Now, vy

So, equation (18-4) becomes
| X,dS[dS" = t,,cos (x,V") +t,,cos (y,V') +1,,cos (z,V),

which is in agreement with the first of the three boundary conditions given in equations
(14-1).

In a similar manner it can be shown that the remaining two boundary conditions given in
equations (16-1) are equivalent to the remaining two boundary conditions given in
equations (14-1).

19. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS FOR AN INCOMPRESSIBLE MATERIAL

In deducing the equations of motion and boundary conditions for an incompressible
material, we must again take account of the fact discussed in § 8, that the allowable choice
of the components du, dv, 0w of the virtual displacements is restricted by the incompressibility.

If 47 is a small volume element, measured in the undeformed state, we have

Sr) or = f(1) or,

60-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

486 R. S. RIVLIN ON LARGE ELASTIC

where f(7) is an arbitrary function of 7, which may vary in form from point to point of the
material in a continuous manner.
Integrating throughout the whole volume of the body in the undeformed state,

ff(T) dr ——-ff(l)ch

The components du, v and dw are thus restricted by the relation

J f Sr)dr =
at any instant of time.
Since this relation is valid at all instants of time, it follows that

f“dt 5(r) dr = 0. (19-1)

For an incompressible material, the variational equation (15-6) is thus subject to the
restricting condition of equation (19-1). Therefore, the equation

s[* (T V)dz+f SW, dt+ 'dt SAf(r)] dr = 0 (19-2)

0

must be valid, where A is an arbitrary constant, for all variations of du, v and dw possible in
a compressible material. Now, since V = JW&’T, we can obtain equation (19-2), by sub-

stituting W —Af(7) for W in equation (15-1).
Therefore, the equations of motion for an incompressible material can be obtained by
substituting W—Af(7) for W in equations (15-7), etc. Writing —p = Af”(7), we obtain
0%u d (ow J (0w J (oW
pﬁ_t_Q“:pX+0x{0u +p0u} 0y{0u +ﬁﬁu }+0z{0u +p0u}
and two similar equations in which # and X are replaced by v and Y and by w and Z
respectively.

(19-3)

. d (o7 d (07 d (0t
Since %(@;)*ay (3u)+(?z ((?u) 0,
equation (19-3) becomes
Pu_ DWW\ D (W, 9 AW\ drdp drdp  dr dp .
& "’XJ“ax(au )+3y((?u )+(3z(6u )+(?u ot auay T (19

In a similar manner the two other equations of motion may be obtained from the re-
maining two equations of (15-9), giving, together with (19-4), the three equations of motion
for an incompressible material:

R d (W 9 (@W\ 9 W\ drdp drdp _drdp
Por _pX+8x(3u )+0y((?u )+a_z( )+(?u o5 u, 9y 0w 027
o 0 AW\ W\ 9 (OW\  drdp  drdp  ordp .
Por =" Y+(9x(ﬁv )+ﬁy s, )+§2(H)+0v 2x "3, 0y 00, 027 (19:5)
Pw (W, 0 @AW\ D (AW drdp  drdp  or op
T Z+8x(3w )+@ 8—%)+8_(T)+8w ﬁx+0w dy " dw,dz")
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These three equations could equally well have been obtained by substituting for £,,, ¢,,, .
in equations (13-2), the expressions given in (8-3) and making use of the operational relatlon-
ships (17-2).

The undetermined quantity p can be eliminated between the three equations (19-5) and
the two equations so obtained, together with the incompressibility condition 7 = 1, may be
taken as the equations of motion.

Thus, writing equations (19-5) in the form

ordp  drdp drdp _
du, dx (?u dy " du,dz

dr dp Ot 6[) dr dp )
dv,dx " dv, ﬁy du, 0z

dr dp Ot dp , It dp

and w0z dwydy  w,dz P

and solving for dp/dx, dp/dy and dp/dz, we obtain

. 5 oo o

Y du, dv, Jdw,

dp | dr or Or dr  odr Or
0 0w, By, Buy | [ |0 B, O, (19:6)

I oo

du, dv, Jw, du, dv, Jw,

and two similar expressions for dp/dy and dp/iz.

Now, it can readily be shown by algebraic manipulation that the denominator in the
expression on the right-hand side of equation (19-6) is equal to 72 and therefore, since 7 = 1,
to unity. Also, it can be shown that

dr dr Ot Or
9@%—;—‘3‘—%5@ (1+ux)7'—l+ux,
Or 9r 91 1 _ _
ow, du, Ju,dw, * =l
and or or 9t o1 _ w,T w
du,dv, dv,du, * P
so that equation (19-6) becomes
P (Ltu)ato,fruy. (19-7)
In a similar manner it can be shown that
ap ,
@zuya—l—(l—kvy)ﬂ—l—wyy (19-8)

and g—‘gzuzoc+vzﬂ+(l+wz) y, (19-9)
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where “ :”g;g [ax( ) 0y (??ZV)*@(?Z(??Z/ )]
p=rg—o¥ ':(%c(ﬁv )+3y (gV)JF%(%W)]
r= a7 [ax(aw)ﬂy(gm*;ﬂ%ﬂ

p can be eliminated from equations (19-7), (19-8) and (19-9) giving

d d . )
a}][(l—*—ux)a_’_vxﬁ’kwxl}/] = a_x[uya_}_(l—l'vy)ﬁ—f"wy'}’]
: | ] (19-10)
and @[uza_l_vzﬁvl_(l—*_wz) 7] :az[uya+(l+vy)ﬂ+wy7]'

These two equations, together with the relation 7 = 1, are the equations of motion for an
incompressible material.

Again, the boundary conditions for an incompressible material may be obtained by
substituting W —Af(r) for W in equations (16-1). Then, writing —p = Af"(7), we have

aw aw W
X — I:;Z cos (¥, v) -I—a—uyCOS (y,v) +3ZCOS (z, V)]

or or ot
-1-/)[6—% cos (%, V) +@ cos (y,v) +a—zzz cos (z, V)] >

W oW 114
Y, = l}a.v_x_ cos (x, V) +%; cos (y,v) —l—%z—cos (2, V):I

(19-11)
Jr. ar or
—I—p[%; cos (x,v) +0_vy cos (y,v) —I—%z— cos (z, V):l ,

aw aw oW
2, =[G, 005 () gy 003 ) 3y, €03 (20) |

—|—[)|:a cos (%, V)—l—a cos (y, V)—I————cos z,v):l.J

Eliminating p, we have

ow ow aw
Tﬁ;cos (x,v) +97‘; cos (y, V) +a—uzcos (z,v) =X,

or or or
o cos (x,v) + 7u, cos (y,v) + o cos (z,v)

ow ow ow
T (x,v) +%;cos (y,v) +3—”z cos (z,v)—7Y,

X

or or or
o, cos (x,v) +917y cos (y,v) +ECOS (z,v)
ow ow ow
e (x,v) —|—9-w— cos (¥, V) +»5%; cos (z,v) —Z,
- x(?T yﬁr or =) (19-12)
ow, cos (x,v) + 7, cos (y,v) +Wz cos (z,v)

which, together with the incompressibility condition 7 = 1, form the boundary conditions
for an incompressible material.
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20. Tue EQUATIONS OF MOTION AND BOUNDARY CONDITIONS
FOR AN INCOMPRESSIBLE, NEO-HOOKEAN MATERIAL

It has been seen that, for a neo-Hookean material, the stored energy per unit volume W
is given in terms of the components of displacement «, v, w in a fixed rectangular, Cartesian
co-ordinate system by (9-4).

With this law for the stored energy, «, £ and 7, in equations (19-7), (19-8) and (19-9),
are given by

32
C=p oy —pX—1EV?y,
0%
B=pyz—pY—3EV ¢ (201)
2
and yzp%;—g —pZ—31EV?
and dW/du,, IW[du,, ..., in equations (19-5), (19-11) and (19-12), are given by (9-5).
Thus, the boundary conditions (19-12) become
3E[(14-u,) cos (x,v) +u, cos (y,v) 4u,cos (z,v)] — X,
(;?T cos (%, ) +;u cos (y,v) +; cos (z,v)
Y
_ 3£[v,cos (x,v) 4 (1+4v,) cos (y,v) +-v, cos (z,v)] - ¥,
- or or or
o, cos (x,7) +%—y— cos (y,v) + o0, cos (z,v)
_ 3E[w, cos (x,v) +w, cos (y,v) + (1 +w,) cos (z,v)| - Z, p
- or or or T
(?—u)xCOS (x,v) +(?—wy cos (y,v) +%; cos (z,v)
and 7=1. (20-2)

By introducing the relations (9-5) in equations (19-5), the equations of motion for an
incompressible, neo-Hookean material are obtained as

u _ or dp Ot dp  dr dp )
pap = PXHAEV 5 Jox auy 0y w022
% _ Lpvoe, , 0T dp 9T dp 0T dp )
P o PY+IEV v+0 0x+0v (?y+c?v 0z’ (20°3)
0w P or dp 9 dp dT dp
P = PEREN A G ox w0y T ow, 0z

In addition, the incompressibility condition 7 = 1 must be satisfied throughout the material.

The equations (20-3) may be obtained in an alternative form as equations (19-7), (19-8)
and (19-9), where a, f and y are given by equation$ (20-1). If the body is in equilibrium
under the action of no body forces,

—31EV%, f=-—-1EV% and y=-—-1EV,
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490 R. S. RIVLIN ON LARGE ELASTIC DEFORMATIONS. I
so that equations (19-7), (19-8) and (19-9) become

— 9% = LE[(1+u,) Vu+v, Vio+w, Vo],

—dp|dy = §E[u,V2u+(1+0v,) V4w, V2] (20-4)
and —0pl0z = +E[u, Viu+v, Vo + (1+w,) Vauw].

The equations of motion (20-3) or (20-4) and the boundary conditions (19-12) can readily
be transformed into other orthogonal, co-ordinate systems for the solution of problems, for
which a rectangular, Cartesian system is not suitable.

This work forms part of a programme of fundamental research undertaken by the Board
of the British Rubber Producers’ Research Association. The author’s thanks are due to
Dr L. R. G. Treloar, Dr A. D. Booth, Dr K. Weissenberg and Dr D. N. de G. Allen for many
helpful discussions, and to Sir Geoffrey Taylor for his criticisms of the draft.
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